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Dynamic fracture model for acoustic emission
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Abstract. We study the acoustic emission produced by micro-cracks using a two-dimensional disordered
lattice model of dynamic fracture, which allows to relate the acoustic response to the internal damage of
the sample. We find that the distributions of acoustic energy bursts decays as a power law in agreement
with experimental observations. The scaling exponents measured in the present dynamic model can related
to those obtained in the quasi-static random fuse model.

PACS. 62.65.+k Acoustical properties of solids – 46.50.+a Fracture mechanics, fatigue and cracks

1 Introduction

Crackling noise [1] is widely observed in systems as dif-
ferent as superconductors [2], magnets [3] or plastically
deforming crystals [4]. A typical example is the acoustic
emission (AE) recorded in a stressed material before fail-
ure. The noise is a consequence of micro-cracks forming
and propagating in the material and should thus provide
an indirect measure of the damage accumulated in the sys-
tem. For this reason, AE is often used as a non-destructive
tool in material testing and evaluation. Beside these prac-
tical applications, understanding the statistical properties
of crackling noise has become a challenging theoretical
problem. The distribution of crackle amplitudes follows a
power law, suggesting an interpretation in terms of critical
phenomena and scaling theories. This behavior has been
observed in several materials such as wood [5], cellular
glass [6], concrete [7] and paper [8] to name just a few.

The statistical properties of fracture in disordered me-
dia are captured qualitatively by lattice models, describ-
ing the medium as a discrete set of elastic bonds with
randomly distributed failure thresholds [9–11]. After each
failure the stress is redistributed in the lattice in a quasi-
static approximation: i.e. the crack velocity is much slower
than stress relaxation. Thus acoustic waves are not taken
into account and the activity is monitored by the dam-
age evolution or by the dissipated elastic energy. Numer-
ical simulations indicate that micro-cracks propagate in
avalanches giving rise to an heterogeneous response. The
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avalanche distribution is typically described by power law
distributions and the results are usually interpreted in the
framework of phase transitions [12–16]. Despite the fact
that critical phenomena are normally associated with a
certain degree of universality (i.e. the scaling exponents
should not depend on micro-structural details), there has
been so far no quantitative agreement between models and
experiments. A reason that could account for this discrep-
ancy is the absence of acoustic waves in most models. It
is then not obvious how to relate AE activity to internal
avalanches. On the other hand, the interpretation of frac-
ture as a critical phenomenon is still controversial [12–16].

Dynamic lattice models have been widely used in the
past to analyze fracture processes [17–20], but although
acoustic waves are explicitly included, the AE signal is
usually not analyzed. Here we use a lattice model for dy-
namic fracture in a disordered medium, to obtain a direct
correspondence between the recorded AE activity and the
internal damage evolution. We find that the cumulative
AE amplitudes are directly related — by a power law —
to the cumulative damage. Next, we measure the distribu-
tion of the AE burst energies and find a power law with an
exponent β � 1.7 independent on the loading rate. This
exponent can be related to the exponent describing failure
avalanches in quasi-static models [12–16].

The paper is organized as follows: in Section 2 we de-
fine the model and report the results of our numerical sim-
ulations in Section 3. Finally, in Section 4 we provide a the-
oretical interpretation of the numerical data and present
our conclusions.
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2 Model

We consider a scalar model of dynamic fractures where a
two-dimensional lattice is loaded in mode III: the lattice
lies in the (x, y) plane and deformation occurs along the
z axis, so that the equations of elasticity become scalar.
The equation of the motion for the anti-planar displace-
ment u of a site with coordinate i, j is

ρüi,j = −K
∑
(l,m)

(ui,j − ul,m) − Γ u̇i,j, (1)

where the sum runs over the nearest neighbors (l, m) of
site (i, j), K is the elastic constant, ρ is the density and
dissipation is simulated by a viscous damping with a con-
stant Γ . Notice that a more realistic damping could be
provided by a viscoelastic term (see for instance, in a dif-
ferent context, the model in Ref. [21]), but this would gen-
erate some complications in the numerical integration. In
order to suppress some lattice effects, we use a 45 degree
tilted square lattice. A constant strain rate is imposed to
the model, by moving the boundary sites on two opposite
boundaries at constant velocity V and −V , respectively.
Periodic boundary conditions are imposed in the other
direction. Disorder is simulated assigning randomly dis-
tributed failure threshold: a bond is removed (i.e. K is set
to zero) when ∆u > fc, and fc is uniformly distributed
in [0, 1]. A model similar to ours was introduced and stud-
ied in the absence of disorder by Marder and Liu [18] and
in the quasi-static limit (V → 0, ρ → 0, Γ → 0) reduces
to the random fuse model (RFM). In the RFM, a lattice
of fuses with random thresholds break in response to an
increasing voltage [10,11]. Due to the scalar nature of our
model there is a direct mapping between elastic and elec-
tric parameters [9]. The choice we made for the disorder
distribution in the RFN corresponds to the limit of strong
disorder, in which substantial damage is accumulated be-
fore the final fracture [10].

The equation of motion (Eq. (1)) is integrated numer-
ically using a fifth order Runge-Kutta method. We work
with a lattice of linear size L = 80 and chose the units of
space and time so that ρ = K = 1. Each time a bond is
stretched beyond its threshold the lattice constant is set to
zero and an elastic wave is emitted. Due to the anti-plane
constraint for the displacements, we only have transverse
wave propagation with sound speed c =

√
K/ρ = 1 in our

units. The damping constant is chosen to be Γ = 0.1 so
that typical length traveled by a wave is a little smaller
than the lattice size. For smaller values of Γ ringing effects
and reflected waves do not allow to separate the single
pulses and the lattice breaks at once. On the other hand,
excessive damping leads to very small acoustic activity,
which hinders a statistical analysis. Even if the damp-
ing constant is small reflected waves can induce boundary
failure, due to the rigidity of the loaded edge. Thus we
do not allow for bond failures in two boundary layers of
length l = 5 close to the loaded edges. This corresponds
to load through a soft contact, or a traction machine with
an elastic constant of the order of the material constant.

The model is simulated for a variety of loading velocities
all much lower than the sound speed V � c.

3 Simulation results

Measuring the displacements of every lattice site and cal-
culating the forces for every time steps, we have obtained
the stress-strain curve for four different value of the ap-
plied strain rate. In Figure 1 we show that the stress is a
linear function of the strain up to the yield point, which
precedes the total failure of the sample. The applied strain
rate has little effect on the linear part of the curve, while
it influences the curve after the peak. In particular, the
drop in the stress is sharper for lower driving rates, be-
cause the time scale for internal stress relaxation is larger
than the driving scale. Thus the dynamics approaches the
quasistatic limit, where a sharp drop is expected [13]. On
larger driving rates the two timescales are more intercon-
nected and the breakdown is less sharp.

Monitoring the activity of some particular lattice sites
we have direct access to the AE signal. These sites mimic
the effect of transducers coupled to the material in a typ-
ical AE experiment. In a typical run, we record the dis-
placements, velocities and accelerations of four sites in the
boundary layer and two sites in the interior. Typically,
AE distributions are recorded from a single site and aver-
aged over ten realizations of the disorder. We have tested
that the statistical properties of the signal do not vary
for different boundary sites, while there is a clear differ-
ence between boundary and inner sites. In the following,
we concentrate on sites in the boundary layer, in order to
avoid excessive fluctuations due to failures occurring on
neighboring bonds in the inner region.

An example of the typical signals recorded with our
model are reported in Figure 2. A large acoustic activity
is visible in the upper panel where we show the local ac-
celeration a of a boundary site as a function of time. We
can also monitor the velocity signal which is simply re-
lated to the acceleration and display the same features. In
the present model, it will be convenient to use the accel-
eration as a AE monitoring tool, since the velocity has a
bias induced by the external loading: even in the absence
of cracking the lattice has a non-vanishing velocity. We
define the associated cumulative energy as

E(t) ≡
∫ t

0

dt′a2(t′). (2)

The behavior of the cumulative acoustic energy E(t) is
typically monitored in AE experiments. In some cases,
E(t) is found to increase as a power law [5], or exponen-
tially in other cases [8]. In general one expects a marked
peak close to failure, as we also observe in Figure 2, ob-
tained for V = 10−3. The curve follows quite well a cu-
bic law, E ∼ t3, apart from sample fluctuations, which
become larger close to the final breakdown. Similar fluc-
tuations are observed in experiments and have been the
object of an intense theoretical analysis [22].
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Fig. 1. The stress-strain curve for different applied strain
rates.
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Fig. 2. A typical signal measured in the model. The upper
panel shows the velocity acceleration of a site close to the
boundary. In the middle panel we show a magnification of a
portion of the signal. In the lower panel is reported the cumu-
lative energy, E(t) ≡ ∫ t

0
dt′a2(t′), as a function of time for a

single realization of disorder. The dashed line follows t3.

A central problem in AE measurements is to correlate
the recorded acoustic activity with the internal damage
state. In this way, AE can be used as a tool for damage
evaluation. In our model, we have a direct access to the
internal damage D that can be defined as the total number
of failed bonds. We find that D increases linearly with
time (see Fig. 3) apart from a rapid increase very close
to failure. Rescaling the curves with the loading rate one
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Fig. 3. The damage D evolution is displayed as a function of
time for different loading rates. The curves collapse onto each
other when plotted with respect to strain γ ≡ V t/L.
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Fig. 4. The average cumulative energy plotted as a function
of damage. The line represents a D3 law which fits well the
curve.

sees that D is in fact a linear function of the applied strain
γ ≡ (V t)/L (see the inset of Fig. 3) [25].

These observations thus lead to a direct scaling rela-
tion between internal damage and released acoustic en-
ergy: Figure 4 shows that E scales as D3. This result can
be explained assuming that the cumulative acoustic en-
ergy E is proportional to the total released elastic energy
Eel ∼ KDγ2 ∼ D3 .

As we discussed in the introduction, a common feature
of crackling noise experiments is the power law distribu-
tion of the AE bursts. In Figure 5 we report the distri-
bution of energy bursts measured in our model for the
acceleration signal, defining ε ≡ a2. We show the results
for two values of the driving velocity and in both cases
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Fig. 5. The distribution of acoustic burst energies for different
driving rates. The line is a power law with exponent β = 1.7.

the distribution decays as power law with an exponent
β = 1.7 ± 0.1, independent on the loading rate, which
only affects the low part of the distribution. This behav-
ior could be expected since for a higher driving rate some
pulses overlap, leading to a depletion of the number of
small avalanches as observed in Figure 5. The same results
are found in the case of the velocity signal. Experimental
results report an exponent value in the same range, even if
it differs a little from one material to another: for wood the
exponent is β = 1.51±0.05, for fiberglass β = 2.0±0.01 [5],
β = 1.30± 0.1 for paper [8], β = 1.5± 0.1 for experiments
on cellular glass [6].

4 Discussion and outlook

A large amount of theoretical activity has been devoted
in the past to understand the origin of power law dis-
tributions of AE amplitudes widely observed in material
fracture. Most of the analysis was devoted to quasi-static
models, such as the the RFM, where fracture was shown
to occur in damage burst, whose size ∆D is distributed
as P (∆D) ∼ (∆D)−τ with τ � 2.5 [12,13]. This value is
in perfect agreement with the result τ = 5/2 obtained ex-
actly [23] for the exponent of the avalanche distribution of
the fiber bundle model (FBM) [24], where N fibers with
random failure threshold are loaded in parallel. It was thus
conjectured that the long-range stress transfer present in
the RFM was equivalent to the infinite range load redistri-
bution of the FBM, placing the two models into the same
universality class [12,13]. A similar exponent was found in
a vectorial fracture model, so that this class could be even
broader [13]. Comparing this result with AE experiments
is problematic since quasi-static models do not account
for wave propagation.

In quasistatic models, it is possible to define unam-
biguously a damage burst ∆D, counting the number of

failures due to a small increase of the external load. This
is not the case in a dynamic model, where there is no
time scale separation between driving and fracture. Nev-
ertheless, also in this case the failure process is clustered
both in space and time, with quiescent intervals followed
by rapid bursts of activity. An indirect measure of these
process can be obtained by the distribution of pulse ener-
gies in the acoustic activity, reported in Figure 5. Using
the scaling relation between released acoustic energy and
damage discussed above, we can relate the energy expo-
nent β to the damage exponent τ , which can be directly
measured only in quasistatic models. From E ∼ D3 and
D ∼ t, we expect ε ∼ D2. Substituting this expression
in the equation for the probabilities, assuming ∆D ∼ D
(i.e. the typical avalanche size grows as the damage grows)
P (ε)dε = P (∆D)d(∆D), we obtain τ = 1+2(β−1) = 2.4,
which is very close to τ = 5/2 measured in the RFM. Thus
we conjecture that the acoustic energy exponent measured
in our dynamic model is directly related with the dam-
age exponent measured in the corresponding quasi-static
model [26].

In conclusions, we have introduced a lattice model of
dynamic fracture which can be used to model AE exper-
iments. The model allows to clarify important issues in
the interpretation of the experiments, namely the rela-
tion between internal damage and released acoustic en-
ergy. In particular, we derive direct relations between the
scaling behavior of failure avalanches and acoustic bursts.
It would be interesting to generalize this analysis to more
realistic situations, exploring the role of dimensionality,
load conditions and lattice anisotropy. However, in com-
paring the simulated signal with experiments, we should
be careful about the definition of the events in the time
series, since the amplifier and the AE sensors could bias
the recorded waveform, introducing a systematic error in
the data.

This work has been supported by the INFM center SMC.
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